Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 92

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

The Hydrogen-bond network in sodium chloride tridecahydrate; Analogy with ice VI

Yamashita, Keishiro*; Nakayama, Kazuya*; Komatsu, Kazuki*; Ohara, Takashi; Munakata, Koji*; Hattori, Takanori; Sano, Asami; Kagi, Hiroyuki*

Acta Crystallographica Section B; Structural Science, Crystal Engineering and Materials (Internet), 79(5), p.414 - 426, 2023/10

 Times Cited Count:0 Percentile:0.02(Chemistry, Multidisciplinary)

The structure of a recently-found hyperhydrated form of sodium chloride, NaCl$$cdot$$ 13H(D)$$_{2}$$O, has been determined by ${it in situ}$ single-crystal neutron diffraction at 1.7 GPa and 298 K. It has large hydrogen-bond networks and some water molecules have distorted bonding features such as bifurcated hydrogen bonds and five-coordinated water molecules. The hydrogen-bond network has similarities to ice VI in terms of network topology and disordered hydrogen bonds. Assuming the equivalence of network components connected by pseudo symmetries, the overall network structure of this hydrate can be expressed by breaking it down into smaller structural units which correspond to the ice VI network structure. This hydrogen-bond network contains orientational disorder of water molecules in contrast to the known salt hydrates. Here, we present an example for further insights into a hydrogen-bond network containing ionic species.

Journal Articles

Initial yield of hydrated electron production from water radiolysis based on first-principles calculation

Kai, Takeshi; Toigawa, Tomohiro; Matsuya, Yusuke*; Hirata, Yuho; Tezuka, Tomoya*; Tsuchida, Hidetsugu*; Yokoya, Akinari*

RSC Advances (Internet), 13(11), p.7076 - 7086, 2023/03

 Times Cited Count:3 Percentile:81.33(Chemistry, Multidisciplinary)

Scientific insights of water radiolysis are widely used in the life sciences and so on, however, the formation mechanism of radicals, a product of water radiolysis, is still not well understood. We are challenging to develop a simulation code to solve this formation mechanism from the viewpoint of radiation physics. Our first-principles calculations have revealed that the behavior of secondary electrons in water is governed not only by collisional effects but also by polarization effects. Furthermore, from the predicted ratio of ionization to electronic excitation, based on the spatial distribution of secondary electrons, we successfully reproduce the initial yield of hydrated electrons predicted in terms of radiation chemistry. The code provides us a reasonable spatiotemporal connection from radiation physics to radiation chemistry. Our findings are expected to provide newly scientific insights for understanding the earliest stages of water radiolysis.

Journal Articles

Difference in expansion and dehydration behaviors between NH$$_4$$- and K-montmorillonite

Kawakita, Ryohei; Saito, Akito*; Sakuma, Hiroshi*; Anraku, Sohtaro; Kikuchi, Ryosuke*; Otake, Tsubasa*; Sato, Tsutomu*

Applied Clay Science, 231, p.106722_1 - 106722_7, 2023/01

 Times Cited Count:1 Percentile:21.06(Chemistry, Physical)

Journal Articles

Effect of different interlayer counter-ions on montmorillonite swelling; Key controlling factors evaluated by molecular dynamic simulations

Yotsuji, Kenji*; Tachi, Yukio; Sakuma, Hiroshi*; Kawamura, Katsuyuki*

Genshiryoku Bakkuendo Kenkyu (CD-ROM), 29(2), p.63 - 81, 2022/12

The understanding of the swelling phenomenon of montmorillonite is essential to predict the physical and chemical behavior of clay-based barriers in radioactive waste disposal systems. This study investigated the key factors controlling crystalline swelling behavior of montmorillonite with different interlayer counter-ions by molecular dynamics (MD) simulations. On the basis of the comparisons between MD simulated and experimental results, the water content in the interlayer in five homoionic (Na$$^{-}$$, K$$^{-}$$, Cs$$^{-}$$, Ca$$^{-}$$ and Sr$$^{-}$$) montmorillonite was strongly correlated to the hydration number and the preference of an outer- or inner-sphere complex of each counter-ion. The detailed analysis for these results offer insights that the hydration number is controlled by the hydration free energy, the volume and the distribution of each interlayer counter-ion. The systematic MD simulations with virtually variable parameters clarified that the hydration free energy and the charge of interlayer counter- ions compete as influencing factors, and the control the formation rate of an outer-sphere complex of each counter-ion. The empirical relationships between these key factors will allow essential insights into predicting the swelling behavior of montmorillonite with different interlayer counter-ions.

Journal Articles

Influences of hydration-dehydration on local structure in layered perovskite LaSr$$_{3}$$Fe$$_{3}$$O$$_{10}$$

Yagi, Yutaro*; Wakita, Yudai*; Kagomiya, Isao*; Matsue, Ikuya*; Kakimoto, Kenichi*; Matsumura, Daiju; Yoneda, Yasuhiro

ChemistrySelect (Internet), 7(21), p.e202104575_1 - e202104575_7, 2022/06

 Times Cited Count:0 Percentile:0(Chemistry, Multidisciplinary)

Journal Articles

Texture analysis of water-hydrated montmorillonite clay by coarse-grained molecular dynamics simulation

Kimoto, Kazushi*; Kawamura, Katsuyuki*; Makino, Hitoshi

Journal of Computer Chemistry, Japan, 19(2), p.46 - 49, 2020/00

This study proposes a 2D coarse-grained molecular dynamics (CGMD) method for the compaction simulation of montmorillonite clay. In the CGMD method, a unit structure of a water-hydrated clay molecule is coarse-grained into a particle. Thus, the deformable molecules are modeled as a set of linearly connected coarse-grained particles. As the inter-particle forces, the intra-molecular bonding and inter-molecular van der Waals forces are considered. For simplicity, the intra-molecular bonding is modeled as a linear harmonic oscillator, while the Lenard-Jones potential is used to define the van der Waals force field. With this model, the mechanical compaction of moistured montmorillonite is numerically simulated to find that 4-6 considerably deformed molecules are layered as a result of the compaction. It is alsofound that the simulated XRD pattern agrees to the experiment in terms of the peak angle.

Journal Articles

Crystal structure of a high-pressure phase of magnesium chloride hexahydrate determined by ${it in-situ}$ X-ray and neutron diffraction methods

Yamashita, Keishiro*; Komatsu, Kazuki*; Hattori, Takanori; Machida, Shinichi*; Kagi, Hiroyuki*

Acta Crystallographica Section C; Structural Chemistry (Internet), 75(12), p.1605 - 1612, 2019/12

 Times Cited Count:7 Percentile:58.9(Chemistry, Multidisciplinary)

A crystal structure of a high-pressure phase of magnesium chloride hexahydrate (MgCl$$_{2}$$ $$cdot$$ 6H$$_{2}$$O-II) and its deuterated counterpart (MgCl$$_{2}$$ $$cdot$$ 6D$$_{2}$$O-II) have been identified for the first time by in-situ single-crystal X-ray and powder neutron diffraction. The crystal structure was analyzed by the Rietveld method for the neutron diffraction pattern based on the initial structure determined by single-crystal X-ray diffraction. This high-pressure phase has a similar framework to that in the known ambient-pressure phase, but exhibits some structural changes with symmetry reduction caused by a subtle modification in the hydrogen-bond network around the Mg(H$$_{2}$$O)$$_{6}$$ octahedra. These structural features reflect the strain in the high-pressure phases of MgCl$$_{2}$$ hydrates.

Journal Articles

Development of the ReaxFF methodology for electrolyte-water systems

Fedkin, M. V.*; Shin, Y. K.*; Dasgupta, N.*; Yeon, J.*; Zhang, W.*; van Duin, D.*; Van Duin, A. C. T.*; Mori, Kento*; Fujiwara, Atsushi*; Machida, Masahiko; et al.

Journal of Physical Chemistry A, 123(10), p.2125 - 2141, 2019/03

 Times Cited Count:44 Percentile:94.92(Chemistry, Physical)

no abstracts in English

Journal Articles

Difference in the hydration water mobility around F-actin and myosin subfragment-1 studied by quasielastic neutron scattering

Matsuo, Tatsuhito; Arata, Toshiaki*; Oda, Toshiro*; Nakajima, Kenji; Kawamura, Seiko; Kikuchi, Tatsuya; Fujiwara, Satoru

Biochemistry and Biophysics Reports (Internet), 6, p.220 - 225, 2016/07

Journal Articles

Calcium silicate hydrate (C-S-H) gel solubility data and a discrete solid phase model at 25$$^{circ}$$C based on two binary non-ideal solid solutions

Walker, C.; Suto, Shunkichi; Oda, Chie; Mihara, Morihiro; Honda, Akira

Cement and Concrete Research, 79, p.1 - 30, 2016/01

 Times Cited Count:69 Percentile:90.65(Construction & Building Technology)

Modeling the solubility behavior of calcium silicate hydrate (C-S-H) gel is important to make quantitative predictions of the degradation of hydrated ordinary Portland cement (OPC) based materials. Experimental C-S-H gel solubility data have been compiled from the literature, critically evaluated and supplemented with new data from the current study for molar Ca/Si ratios = 0.2-0.83. All these data have been used to derive a discrete solid phase (DSP) type C-S-H gel solubility model based on two binary non-ideal solid solutions in aqueous solution(SSAS). Features of the DSP type C-S-H gel solubility model include satisfactory predictions of pH values and Ca and Si concentrations for all molar Ca/Si ratios = 2.7 $$rightarrow$$ 0 in the C-S-H system, portlandite (CH) for Ca/Si ratios $$>$$ 1.65, congruent dissolution at Ca/Si ratios = 0.85, and amorphous silica (SiO$$_{2 (rm am)}$$) for Ca/Si ratios $$<$$ 0.55 as identified in the current study by IR spectroscopy.

Journal Articles

Thermal equilibrium and prehydration processes of electrons injected into liquid water calculated by dynamic Monte Carlo method

Kai, Takeshi; Yokoya, Akinari; Ukai, Masatoshi*; Fujii, Kentaro; Watanabe, Ritsuko

Radiation Physics and Chemistry, 115, p.1 - 5, 2015/10

 Times Cited Count:34 Percentile:94.28(Chemistry, Physical)

Role of secondary electrons on DNA damage have not been understood sufficiently because there still exists a lack of study for thermalization process of an electron in liquid phase. We calculated thermalization lengths and spatial distributions of an electron in liquid water using cross sections for rotation and phonon excitations in a liquid phase. Obtained thermalization lengths are in good agreement with experimental results reported by literatures. Thermalization time was also estimated from time evolution of spatial distributions of the incident electron to be hundreds femtoseconds. From these results, we predict that thermalization and pre-hydration of electron might progress simultaneously. These electrons possibly cause damage in biological molecules in a cell. Particularly severe types of DNA damage consisting of proximately located multiple lesions are potentially induced by reaction of DNA with the thermalized electrons by dissociative electron transfer.

Journal Articles

First-principles calculation studies on cesium in environmental situations; Hydration structures and adsorption on clay minerals

Machida, Masahiko; Okumura, Masahiko; Nakamura, Hiroki; Sakuramoto, Kazuhiro*

Proceedings of Joint International Conference on Mathematics and Computation, Supercomputing in Nuclear Applications and the Monte Carlo Method (M&C + SNA + MC 2015) (CD-ROM), 12 Pages, 2015/04

In order to clarify physicochemical behaviors of radioactive Cs released into environment from the Fukushima Daiichi Nuclear Power Plants, we study on two issues, i.e., hydration structures of Cs$$^{+}$$ and its adsorption on a specific edge in a clay particle (mica) by employing first principles calculations. In this paper, firstly, we report on hydration structures of Cs$$^{+}$$ by using Born-Oppenheimer first-principles molecular dynamics. Our striking finding in the hydration structures is that Cs$$^{+}$$ has no clear second hydration shell in contrast to any other alkali cations. Secondly, we construct a model of the Frayed Edge Site and confirm that the model actually becomes selective for Cs when expanding the interlayer distance from that of the original crystal structure through the calculation of the ion-exchange energy.

Journal Articles

Consideration of radiolytic behavior in diluted and concentrated systems of seawater for computational simulation of hydrogen generation

Nagaishi, Ryuji; Inoue, Masao; Hino, Ryutaro; Ogawa, Toru

Proceedings of 2014 Nuclear Plant Chemistry Conference (NPC 2014) (USB Flash Drive), 9 Pages, 2014/10

Since seawater has been used as a coolant for reactors and spent fuel pools in broken reactor buildings at Fukushima Daiichi NPS accident, radioactive contaminated water emitted following the accident has contained salt content of seawater at high concentrations, different from that at TMI-2 accident. Radiolysis of seawater leading to hydrogen generation and corrosion has been simulated and reported by several groups. However, the proposed radiolysis models cannot be always applied to water radiolysis at the wide range of salt concentrations present in the NPS, mainly because primary yields of radiolysis products of water and radiation-induced reactions are dependent on the salt concentration. In this study, the radiolytic behavior in diluted and concentrated systems of seawater was considered on the basis of results in steady state and pulse radiolysis experiments, in which the above salt effects were demonstrated from the obtained results.

Journal Articles

Dissolution behavior of slag in the presence of cement

Maeda, Toshikatsu; Bamba, Tsunetaka*; Hotta, Katsutoshi*; Mizuno, Tsuyoshi*; Ozawa, Tatsuya

Nihon Genshiryoku Gakkai Wabun Rombunshi, 4(4), p.242 - 247, 2005/12

no abstracts in English

Journal Articles

Recent progress on solution chemistry of actinides studied by time-resolved laser-induced fluorescence spectroscopy

Kimura, Takaumi; Kirishima, Akira*; Arisaka, Makoto

Kidorui, (47), p.43 - 56, 2005/11

no abstracts in English

Journal Articles

Protein boson peak originated from hydration-related multiple minima energy landscape

Jochi, Yasumasa*; Kitao, Akio*; Go, Nobuhiro

Journal of the American Chemical Society, 127(24), p.8705 - 8709, 2005/06

 Times Cited Count:27 Percentile:61.19(Chemistry, Multidisciplinary)

no abstracts in English

Journal Articles

Complicated water orientations in the minor groove of the B-DNA decamer d(CCATTAATGG)$$_{2}$$ observed by neutron diffraction measurements

Arai, Shigeki; Chatake, Toshiyuki*; Ohara, Takashi; Kurihara, Kazuo; Tanaka, Ichiro*; Suzuki, Nobuhiro*; Fujimoto, Zui*; Mizuno, Hiroshi*; Niimura, Nobuo

Nucleic Acids Research, 33(9), p.3017 - 3024, 2005/05

 Times Cited Count:93 Percentile:82.96(Biochemistry & Molecular Biology)

It has long been suspected that the structure and function of a DNA duplex can be strongly dependent on its degree of hydration. By neutron diffraction experiments, we have succeeded in determining most of the hydrogen (H) and deuterium (D) atomic positions in the d(CCATTAATGG)$$_{2}$$ duplex. Moreover, the D positions in 27 D$$_{2}$$O molecules have been determined. In particular, the complex water network in the minor groove has been observed in detail. By a combined structural analysis using 2.0 &Aring; resolution X-ray and 3.0 &Aring; resolution neutron data, it is clear that the spine of hydration is built up, not only by a simple hexagonal hydration pattern (as reported in prior X-ray studies), but also by many other water bridges hydrogen-bonded to the DNA strands. The complexity of the hydration pattern in the minor groove is derived from an extraordinary variety of orientations displayed by the water molecules.

Journal Articles

Hydration of Y$$^{3+}$$ ion; A Car-Parrinello molecular dynamics study

Ikeda, Takashi; Hirata, Masaru; Kimura, Takaumi

Journal of Chemical Physics, 122(2), p.024510_1 - 024510_5, 2005/01

 Times Cited Count:31 Percentile:68.38(Chemistry, Physical)

The solvation shell structure of Y$$^{3+}$$ and the dynamics of the hydrated ion in an aqueous solution of 0.8$$M$$ YCl$$_{3}$$ are studied in two conditions with and without an excess proton by using first principles molecular dynamics method. We find that the first solvation shell around Y$$^{3+}$$ contains eight water molecules forming a square antiprism as expected from X-ray absorption near edge structure in both the conditions we examined. A detailed analysis relying upon localized orbitals reveals that the complexation of water molecules with yttrium cation leads to a substantial amount of charge redistribution particularly on the oxygen atoms, giving rise to the chemical shifts of $$sim$$ -20 ppm in $$^{17}$$O NMR relative to the computed nuclear shieldings of the bulk water.

Journal Articles

Primary process of radiation chemistry studied by ion pulse radiolysis

Yoshida, Yoichi*; Yang, J.*; Saeki, Akinori*; Tagawa, Seiichi*; Shibata, Hiromi*; Namba, Hideki; Kojima, Takuji; Taguchi, Mitsumasa

JAERI-Review 2004-025, TIARA Annual Report 2003, p.143 - 144, 2004/11

no abstracts in English

Journal Articles

Luminescence study on the inner-sphere hydration number of lanthanide(III) ions in neutral organo-phosphorus complexes

Zhang, P.*; Kimura, Takaumi; Yoshida, Zenko

Solvent Extraction and Ion Exchange, 22(6), p.933 - 945, 2004/00

 Times Cited Count:13 Percentile:45.29(Chemistry, Multidisciplinary)

no abstracts in English

92 (Records 1-20 displayed on this page)